亚洲国产天堂久久综合226114,亚洲va中文字幕无码毛片,亚洲av无码片vr一区二区三区,亚洲av无码乱码在线观看,午夜爽爽爽男女免费观看影院

曙海教育集團(tuán)
全國報名免費(fèi)熱線:4008699035 微信:shuhaipeixun
或15921673576(微信同號) QQ:1299983702
首頁 課程表 在線聊 報名 講師 品牌 QQ聊 活動 就業(yè)
 
Neural computing – Data science培訓(xùn)

 
   班級規(guī)模及環(huán)境--熱線:4008699035 手機(jī):15921673576( 微信同號)
       每期人數(shù)限3到5人。
   上課時間和地點(diǎn)
上課地點(diǎn):【上?!浚和瑵?jì)大學(xué)(滬西)/新城金郡商務(wù)樓(11號線白銀路站) 【深圳分部】:電影大廈(地鐵一號線大劇院站)/深圳大學(xué)成教院 【北京分部】:北京中山學(xué)院/福鑫大樓 【南京分部】:金港大廈(和燕路) 【武漢分部】:佳源大廈(高新二路) 【成都分部】:領(lǐng)館區(qū)1號(中和大道) 【沈陽分部】:沈陽理工大學(xué)/六宅臻品 【鄭州分部】:鄭州大學(xué)/錦華大廈 【石家莊分部】:河北科技大學(xué)/瑞景大廈 【廣州分部】:廣糧大廈 【西安分部】:協(xié)同大廈
最近開課時間(周末班/連續(xù)班/晚班):2019年1月26日
   實驗設(shè)備
     ☆資深工程師授課
        
        ☆注重質(zhì)量 ☆邊講邊練

        ☆合格學(xué)員免費(fèi)推薦工作
        ★實驗設(shè)備請點(diǎn)擊這兒查看★
   質(zhì)量保障

        1、培訓(xùn)過程中,如有部分內(nèi)容理解不透或消化不好,可免費(fèi)在以后培訓(xùn)班中重聽;
        2、培訓(xùn)結(jié)束后,授課老師留給學(xué)員聯(lián)系方式,保障培訓(xùn)效果,免費(fèi)提供課后技術(shù)支持。
        3、培訓(xùn)合格學(xué)員可享受免費(fèi)推薦就業(yè)機(jī)會。

課程大綱
 

Overview of neural networks and deep learning
The concept of Machine Learning (ML)
Why we need neural networks and deep learning?
Selecting networks to different problems and data types
Learning and validating neural networks
Comparing logistic regression to neural network
Neural network
Biological inspirations to Neural network
Neural Networks– Neuron, Perceptron and MLP(Multilayer Perceptron model)
Learning MLP – backpropagation algorithm
Activation functions – linear, sigmoid, Tanh, Softmax
Loss functions appropriate to forecasting and classification
Parameters – learning rate, regularization, momentum
Building Neural Networks in Python
Evaluating performance of neural networks in Python
Basics of Deep Networks
What is deep learning?
Architecture of Deep Networks– Parameters, Layers, Activation Functions, Loss functions, Solvers
Restricted Boltzman Machines (RBMs)
Autoencoders
Deep Networks Architectures
Deep Belief Networks(DBN) – architecture, application
Autoencoders
Restricted Boltzmann Machines
Convolutional Neural Network
Recursive Neural Network
Recurrent Neural Network
Overview of libraries and interfaces available in Python
Caffee
Theano
Tensorflow
Keras
Mxnet
Choosing appropriate library to problem
Building deep networks in Python
Choosing appropriate architecture to given problem
Hybrid deep networks
Learning network – appropriate library, architecture definition
Tuning network – initialization, activation functions, loss functions, optimization method
Avoiding overfitting – detecting overfitting problems in deep networks, regularization
Evaluating deep networks
Case studies in Python
Image recognition – CNN
Detecting anomalies with Autoencoders
Forecasting time series with RNN
Dimensionality reduction with Autoencoder
Classification with RBM

 
  備案號:備案號:滬ICP備08026168號-1 .(2024年07月24日)...............