亚洲国产天堂久久综合226114,亚洲va中文字幕无码毛片,亚洲av无码片vr一区二区三区,亚洲av无码乱码在线观看,午夜爽爽爽男女免费观看影院

曙海教育集團(tuán)
全國報名免費熱線:4008699035 微信:shuhaipeixun
或15921673576(微信同號) QQ:1299983702
首頁 課程表 在線聊 報名 講師 品牌 QQ聊 活動 就業(yè)
 
Natural Language Processing with TensorFlow培訓(xùn)

 
   班級規(guī)模及環(huán)境--熱線:4008699035 手機(jī):15921673576( 微信同號)
       每期人數(shù)限3到5人。
   上課時間和地點
上課地點:【上海】:同濟(jì)大學(xué)(滬西)/新城金郡商務(wù)樓(11號線白銀路站) 【深圳分部】:電影大廈(地鐵一號線大劇院站)/深圳大學(xué)成教院 【北京分部】:北京中山學(xué)院/福鑫大樓 【南京分部】:金港大廈(和燕路) 【武漢分部】:佳源大廈(高新二路) 【成都分部】:領(lǐng)館區(qū)1號(中和大道) 【沈陽分部】:沈陽理工大學(xué)/六宅臻品 【鄭州分部】:鄭州大學(xué)/錦華大廈 【石家莊分部】:河北科技大學(xué)/瑞景大廈 【廣州分部】:廣糧大廈 【西安分部】:協(xié)同大廈
最近開課時間(周末班/連續(xù)班/晚班):2019年1月26日
   實驗設(shè)備
     ☆資深工程師授課
        
        ☆注重質(zhì)量 ☆邊講邊練

        ☆合格學(xué)員免費推薦工作
        ★實驗設(shè)備請點擊這兒查看★
   質(zhì)量保障

        1、培訓(xùn)過程中,如有部分內(nèi)容理解不透或消化不好,可免費在以后培訓(xùn)班中重聽;
        2、培訓(xùn)結(jié)束后,授課老師留給學(xué)員聯(lián)系方式,保障培訓(xùn)效果,免費提供課后技術(shù)支持。
        3、培訓(xùn)合格學(xué)員可享受免費推薦就業(yè)機(jī)會。

課程大綱
 

Getting Started

Setup and Installation
TensorFlow Basics

Creation, Initializing, Saving, and Restoring TensorFlow variables
Feeding, Reading and Preloading TensorFlow Data
How to use TensorFlow infrastructure to train models at scale
Visualizing and Evaluating models with TensorBoard
TensorFlow Mechanics 101

Prepare the Data
Download
Inputs and Placeholders
Build the Graph
Inference
Loss
Training
Train the Model
The Graph
The Session
Train Loop
Evaluate the Model
Build the Eval Graph
Eval Output
Advanced Usage

Threading and Queues
Distributed TensorFlow
Writing Documentation and Sharing your Model
Customizing Data Readers
Using GPUs
Manipulating TensorFlow Model Files
TensorFlow Serving

Introduction
Basic Serving Tutorial
Advanced Serving Tutorial
Serving Inception Model Tutorial
Getting Started with SyntaxNet

Parsing from Standard Input
Annotating a Corpus
Configuring the Python Scripts
Building an NLP Pipeline with SyntaxNet

Obtaining Data
Part-of-Speech Tagging
Training the SyntaxNet POS Tagger
Preprocessing with the Tagger
Dependency Parsing: Transition-Based Parsing
Training a Parser Step 1: Local Pretraining
Training a Parser Step 2: Global Training
Vector Representations of Words

Motivation: Why Learn word embeddings?
Scaling up with Noise-Contrastive Training
The Skip-gram Model
Building the Graph
Training the Model
Visualizing the Learned Embeddings
Evaluating Embeddings: Analogical Reasoning
Optimizing the Implementation

 
  備案號:備案號:滬ICP備08026168號-1 .(2024年07月24日)...............