亚洲国产天堂久久综合226114,亚洲va中文字幕无码毛片,亚洲av无码片vr一区二区三区,亚洲av无码乱码在线观看,午夜爽爽爽男女免费观看影院

曙海教育集團(tuán)
全國(guó)報(bào)名免費(fèi)熱線:4008699035 微信:shuhaipeixun
或15921673576(微信同號(hào)) QQ:1299983702
首頁(yè) 課程表 在線聊 報(bào)名 講師 品牌 QQ聊 活動(dòng) 就業(yè)
 
Data Science for Big Data Analytics培訓(xùn)
 
   班級(jí)規(guī)模及環(huán)境--熱線:4008699035 手機(jī):15921673576( 微信同號(hào))
       每期人數(shù)限3到5人。
   上課時(shí)間和地點(diǎn)
開課地址:【上海】同濟(jì)大學(xué)(滬西)/新城金郡商務(wù)樓(11號(hào)線白銀路站)【深圳分部】:電影大廈(地鐵一號(hào)線大劇院站) 【武漢分部】:佳源大廈【成都分部】:領(lǐng)館區(qū)1號(hào)【沈陽分部】:沈陽理工大學(xué)【鄭州分部】:錦華大廈【石家莊分部】:瑞景大廈【北京分部】:北京中山學(xué)院 【南京分部】:金港大廈
最新開班 (連續(xù)班 、周末班、晚班):2020年3月16日
   實(shí)驗(yàn)設(shè)備
     ☆資深工程師授課
        
        ☆注重質(zhì)量 ☆邊講邊練

        ☆合格學(xué)員免費(fèi)推薦工作
        ★實(shí)驗(yàn)設(shè)備請(qǐng)點(diǎn)擊這兒查看★
   質(zhì)量保障

        1、培訓(xùn)過程中,如有部分內(nèi)容理解不透或消化不好,可免費(fèi)在以后培訓(xùn)班中重聽;
        2、培訓(xùn)結(jié)束后,授課老師留給學(xué)員聯(lián)系方式,保障培訓(xùn)效果,免費(fèi)提供課后技術(shù)支持。
        3、培訓(xùn)合格學(xué)員可享受免費(fèi)推薦就業(yè)機(jī)會(huì)。

課程大綱
 
  • Introduction to Data Science for Big Data Analytics
    Data Science Overview
    Big Data Overview
    Data Structures
    Drivers and complexities of Big Data
    Big Data ecosystem and a new approach to analytics
    Key technologies in Big Data
    Data Mining process and problems
    Association Pattern Mining
    Data Clustering
    Outlier Detection
    Data Classification
    Introduction to Data Analytics lifecycle
    Discovery
    Data preparation
    Model planning
    Model building
    Presentation/Communication of results
    Operationalization
    Exercise: Case study
    From this point most of the training time (80%) will be spent on examples and exercises in R and related big data technology.
    Getting started with R
    Installing R and Rstudio
    Features of R language
    Objects in R
    Data in R
    Data manipulation
    Big data issues
    Exercises
    Getting started with Hadoop
    Installing Hadoop
    Understanding Hadoop modes
    HDFS
    MapReduce architecture
    Hadoop related projects overview
    Writing programs in Hadoop MapReduce
    Exercises
    Integrating R and Hadoop with RHadoop
    Components of RHadoop
    Installing RHadoop and connecting with Hadoop
    The architecture of RHadoop
    Hadoop streaming with R
    Data analytics problem solving with RHadoop
    Exercises
    Pre-processing and preparing data
    Data preparation steps
    Feature extraction
    Data cleaning
    Data integration and transformation
    Data reduction – sampling, feature subset selection,
    Dimensionality reduction
    Discretization and binning
    Exercises and Case study
    Exploratory data analytic methods in R
    Descriptive statistics
    Exploratory data analysis
    Visualization – preliminary steps
    Visualizing single variable
    Examining multiple variables
    Statistical methods for evaluation
    Hypothesis testing
    Exercises and Case study
    Data Visualizations
    Basic visualizations in R
    Packages for data visualization ggplot2, lattice, plotly, lattice
    Formatting plots in R
    Advanced graphs
    Exercises
    Regression (Estimating future values)
    Linear regression
    Use cases
    Model description
    Diagnostics
    Problems with linear regression
    Shrinkage methods, ridge regression, the lasso
    Generalizations and nonlinearity
    Regression splines
    Local polynomial regression
    Generalized additive models
    Regression with RHadoop
    Exercises and Case study
    Classification
    The classification related problems
    Bayesian refresher
    Na?ve Bayes
    Logistic regression
    K-nearest neighbors
    Decision trees algorithm
    Neural networks
    Support vector machines
    Diagnostics of classifiers
    Comparison of classification methods
    Scalable classification algorithms
    Exercises and Case study
    Assessing model performance and selection
    Bias, Variance and model complexity
    Accuracy vs Interpretability
    Evaluating classifiers
    Measures of model/algorithm performance
    Hold-out method of validation
    Cross-validation
    Tuning machine learning algorithms with caret package
    Visualizing model performance with Profit ROC and Lift curves
    Ensemble Methods
    Bagging
    Random Forests
    Boosting
    Gradient boosting
    Exercises and Case study
    Support vector machines for classification and regression
    Maximal Margin classifiers
    Support vector classifiers
    Support vector machines
    SVM’s for classification problems
    SVM’s for regression problems
    Exercises and Case study
    Identifying unknown groupings within a data set
    Feature Selection for Clustering
    Representative based algorithms: k-means, k-medoids
    Hierarchical algorithms: agglomerative and divisive methods
    Probabilistic base algorithms: EM
    Density based algorithms: DBSCAN, DENCLUE
    Cluster validation
    Advanced clustering concepts
    Clustering with RHadoop
    Exercises and Case study
    Discovering connections with Link Analysis
    Link analysis concepts
    Metrics for analyzing networks
    The Pagerank algorithm
    Hyperlink-Induced Topic Search
    Link Prediction
    Exercises and Case study
    Association Pattern Mining
    Frequent Pattern Mining Model
    Scalability issues in frequent pattern mining
    Brute Force algorithms
    Apriori algorithm
    The FP growth approach
    Evaluation of Candidate Rules
    Applications of Association Rules
    Validation and Testing
    Diagnostics
    Association rules with R and Hadoop
    Exercises and Case study
    Constructing recommendation engines
    Understanding recommender systems
    Data mining techniques used in recommender systems
    Recommender systems with recommenderlab package
    Evaluating the recommender systems
    Recommendations with RHadoop
    Exercise: Building recommendation engine
    Text analysis
    Text analysis steps
    Collecting raw text
    Bag of words
    Term Frequency –Inverse Document Frequency
    Determining Sentiments
    Exercises and Case study
 
 
  備案號(hào):備案號(hào):滬ICP備08026168號(hào)-1 .(2024年07月24日)....................